Ranks of Elliptic Curves
نویسنده
چکیده
This paper gives a general survey of ranks of elliptic curves over the field of rational numbers. The rank is a measure of the size of the set of rational points. The paper includes discussions of the Birch and SwinnertonDyer Conjecture, the Parity Conjecture, ranks in families of quadratic twists, and ways to search for elliptic curves of large rank.
منابع مشابه
A Heuristic for Boundedness of Ranks of Elliptic Curves
We present a heuristic that suggests that ranks of elliptic curves E over Q are bounded. In fact, it suggests that there are only finitely many E of rank greater than 21. Our heuristic is based on modeling the ranks and Shafarevich–Tate groups of elliptic curves simultaneously, and relies on a theorem counting alternating integer matrices of specified rank. We also discuss analogues for ellipti...
متن کاملRanks of Quadratic Twists of Elliptic Curves over Fq(t)
Some notes on the analogy between number theory over Z and Fq[t] and an attempt to translate a paper of Gouvêa and Mazur on ranks of quadratic twists of elliptic curves over Q to elliptic curves over Fq(t).
متن کاملElliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups
We decompose the Jacobian variety of hyperelliptic curves up to genus 20, defined over an algebraically closed field of characteristic zero, with reduced automorphism group A4, S4, or A5. Among these curves is a genus 4 curve with Jacobian variety isogenous to E2 1 × E2 2 and a genus 5 curve with Jacobian variety isogenous to E5, for E and Ei elliptic curves. These types of results have some in...
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملOn the Ranks of Elliptic Curves with Isogenies
In recent years, the question of whether the ranks of elliptic curves defined over Q are unbounded has garnered much attention. One can create refined versions of this question by restricting one’s attention to elliptic curves over Q with a certain algebraic structure, e.g., with a rational point of a given order. In an attempt to gather data about such questions, we look for examples of ellipt...
متن کامل